
Martini 
Research 
Group

Polymer-Enhanced Fluid Effects on 
Mechanical Efficiency of Hydraulic Pumps

University of California Merced, Department of Mechanical Engineering

Ashlie Martini Michelle Len Pawan Panwar

Milwaukee School of Engineering, Fluid Power Institute

Ninaad Gajghate Paul Michael



Viscosity Modifiers

• Viscosity modifiers (VMs) or 
viscosity index improvers (VIIs) 
are used in many hydraulic fluid 
formulations

• VM polymers thicken the fluid at 
high temperatures

• These additives help minimize 
the variation of viscosity during 
operation
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Data replotted in Martini et al., Tribol Lett (2018) 66:58 from Ver 
Strate & Struglinski, In Schulz & Glass (eds.), ACS, Washington (1991)
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Shear Thinning

• VMs may experience high shear 
stress, causing temporary and 
permanent viscosity loss

• Our previous study showed that 
volumetric efficiency is more 
correlated to temporary viscosity 
loss [1]

• Project goal: understand how VMs 
and shear thinning of VM-containing 
fluids affect mechanical efficiency
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Figure from Reference [2]
[1] Michael et al. Tribol Trans (2018) 61:901
[2] Martini et al., Tribol Lett (2018) 66:58
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Axial Piston Pump: Critical Shear Rates

The major lubricating gaps in an axial 
piston pump exist between the 
interfaces indicated in red:

Significant viscous friction occurs 
at the following shear rates:

Therefore, the approximate critical 
shear rate range in an axial piston 
pump is 104―107 1/s
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Modified from Shang & Ivantysynova, Energies 2018, 11(11), 3210

Piston/cylinder interface

Slipper/swashplate interface

Cylinder block/valve plate interface

End case Cylinder block

Slipper

Swashplate

Piston

Shaft

Valve plate
Shear Rate Range [1/s]

Piston/cylinder 8.85 × 104―5.19 × 105

Slipper/swashplate 8.42 × 104―1.10 × 106

Cylinder block/valve plate 1.00 × 106―8.58 × 106
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Our Approach
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Molecular Simulations Viscosity Measurements Pump Performance Tests

(Top) Cannon StressTech HR Oscillating Rheometer; 
(Bottom) PCS Ultra Shear Viscometer

Dynamometer showing Coriolis flow meter before the pump inlet which 
enables measurement of the fluid density

Molecular dynamics (MD) simulations performed in 
LAMMPS; Image rendered using OVITO
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Test Fluids

• 3 hydraulic fluid formations were 
created to have the same 
viscosities but different 
concentrations of VMs

• All fluids were formulated with 
poly(isobutylene) (PIB) and/or 
poly(alphaolefin) (PAO) 

• These formulations enable the 
effect of base oil viscosity 
reduction to be isolated
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HV46-1 HV46-2 HV46-3

Viscosity @ 40°C [cSt] 48.92 46.75 46.74

Viscosity @ 100°C [cSt] 8.89 8.08 7.86

Viscosity Index 164 146 138

Vis loss  @ 40°C, D5621 0.84% 0.62% 0.36%

PAO 2 [wt.%] 61.5%

PAO 4 [wt.%] 81.0%

PAO 8 [wt.%] 100%

PIB [wt.%] 38.5% 19.0%

* All formulated with the same commercial anti-wear    
additive package 
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PIB and PAO Molecular Structures
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Polyisobutylene (1300 g/mol)

Dimer (C20) of 1-Decene Trimer (C30) of 1-Decene Tetramer (C40) of 1-Decene
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MD Simulation Setup
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z

y

x HV46-1 HV46-2 HV46-3

38.4% PIB
61.6% PAO2

20.4% PIB
79.6% PAO4

100% PAO8
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• To validate our MD simulations, we tested our viscosity 
prediction for HV46-1 at 100°C

• The average viscosity value and standard deviation were 
calculated from four independent simulations

• Reasonable predictions suggest that the simulations can 
be used to calculate viscosity trends where 
experimental data is not available
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MD Simulation Validation

Expected [cSt] Simulation Prediction [cSt] Error [cSt]

Viscosity 8.89 8.40 ± 3.31 0.49
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Shear Thinning in MD Simulations

• Viscosity decreases due to shear-
induced alignment of the polymers, 
causing temporary viscosity loss
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Shear Rate Range for Each Method
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UC Merced Rheometer

Low Shear:
1―1×103 1/s

Ultra Shear Viscometer

High Shear:
1×105―2×106 1/s

Molecular Dynamics Simulations

Ultra High Shear:
1×109―1×1011 1/s
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Viscosity vs Shear Rate Results at 50°C
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UC Merced Rheometer Ultra Shear Viscometer Molecular Dynamics Simulation
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Dynamometer
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• Pump performance testing was 
conducted for all fluids in a 
dynamometer per the ISO 
4409 standard

• The dynamometer consists of:

• 46cc variable displacement 
axial piston pump

• Electronic swashplate 
control

Dynamometer showing Coriolis flow meter before the pump inlet which 
enables measurement of the fluid density
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Test Conditions

• Test points via Latin 
Hypercube method

• Pump testing parameters 
are shown in the table 
below: 

Pump Testing Parameters

Speed 600−2200 rpm

Displacement 0−100%

System Pressure 7−207 bar

Nominal Fluid Temperature 50°C

Test Points
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Dynamometer Results - Torque

16

Best subsets regression identified 
three model terms for pump input 
torque:

Term Form 

Theoretical (1)
𝑇𝑜 =

𝑉𝑖 𝑝

2𝜋

Viscous (2) 𝑇𝑙 = 𝜇𝜔 𝑉𝑖

Turbulent (3)

𝑇𝑡 =
𝜌 𝑉𝑖

5
3

4𝜋
𝜔2

𝑇 = 𝐶𝑜 + 𝐶1
𝑉𝑖 𝑝

2𝜋
+ 𝐶2𝜇𝜔 𝑉𝑖 + 𝐶3

𝜌 𝑉𝑖
5
3

4𝜋
𝜔2
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(1) Wilson, 1950

(2)Wilson,1950

(3)Thoma, J., 1969



Torque Residual Analysis
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Residuals versus theoretical torque Residuals versus 3-term model
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Dynamometer Results – Idling Losses
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• It appears that HV46-2 required the least idle torque and power input, followed by HV46-1 and 
HV46-3

• Hypothesis that reducing viscosity of the carrier base oil improves mechanical efficiency was not 
supported by the experimental results
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Viscosity at the Critical Shear Rate Range

• Recall: the critical shear rate range 
in an axial piston pump was 
between 104 and 107 1/s 

• In this critical shear rate region, 

• HV46-1 has the highest viscosity 
and most shear thinning

• HV46-2 has lower viscosity and 
moderate shear thinning

• HV46-3 exhibits the least shear 
thinning
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Shear Rate Range [1/s]

Piston/cylinder 8.85 × 104―5.19 × 105

Slipper/swashplate 8.42 × 104―1.10 × 106

Cylinder block/valve plate 1.00 × 106―8.58 × 106
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Summary

• The effect of VMs was studied using three fluids with varying 
concentrations of PIB but the same 40 and 100°C viscosities

• Experiments and simulations captured the shear thinning behavior of 
these fluids across ten decades of shear rates

• Preliminary idle pump tests showed that the HV46-2 performed the 
best with lower torque and input power

• The range of shear rates at regions of high viscous friction and 
leakage flow was identified for an axial piston pump

• Future work will correlate shear thinning to hydraulic efficiency
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Thank You! Martini 
Research 
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